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Abstract. A detailed analysis of the short time expansion of the relative mean square displacement
and mean square distance of pairs is performed for molecular fluids. A theoretical expression
which relates the t2 coefficient of the expansion to the local structure of the fluid is obtained. Good
agreement between theoretical predictions and simulated data is found in the case of supercooled
water.

1. Introduction

In monatomic fluids, many authors have devoted attention to the relative velocity correlation
functions and to the relative mean square displacements [1]. The atomic pair dynamics
is governed by the generalized time-dependent pair distribution function G2(r0, rt ; t); this
function is proportional to the joint probability of finding two particles separated by rt at
the time t if their separation was r0 at t = 0. At the initial time one has G2(r0, rt ; 0) =
ng(r0)δ(rt − r0), where n is the number density, g(r) is the pair distribution function
and δ stands for the delta function. Some approximated forms of G2(r0, rt ; t) have been
proposed and their time evolution investigated via simulated experiments [1]. It turns out
thatG2(r0, rt ; t) strongly depends on the initial pair separation r0; at long times, this implies
that the relative mean square displacement is proportional to 2Dt , D being the self diffusion
coefficient, only for pairs with a large initial separation [2]. In the short time regime, the series
expansion ofG2(r0, rt ; t) has been calculated exactly up to the second term. It turns out that [3]

G2(r0, rt ; t) = G2(r0, rt ; 0)− KT

µ
n∇r0∇rt [g(r0)δ(r0 − rt )]

t2

2
+ · · · (1)

whereµ and T are the reduced mass and the temperature, respectively. From equation (1), one
can see that dynamical properties, based on the relative motion of pairs, could strongly depend
on the local structure that the particles initially probe. In supercooled water, we have recently
studied the relative motion of pairs which are in the first coordination shell at the initial time [4].
It has been shown that the anomalies of the relative diffusion in the intermediate time region
are strongly related to the initial molecular orientations. Moreover, the mean square distance
of some specific pairs does not increase with the usual free flight short time behaviour. This
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has polarized our attention on the short time expansion of equation (1) and on its applicability
to molecular systems.

In molecular fluids, the local structure depends on the orientational pair correlation
function g(r, ω1, ω2) and can be properly investigated via the restricted angular averages,
g�(r), of g(r, ω1, ω2). To select the relative pair orientations, the set of eulerian angles in
the local reference frame, ω = {θ, ψ, φ} has been used and the total angular space of a pair,
� = {(ω1, ω2}, has been divided in subspaces �� which collect a set of distorted dimer
geometries; each set is referred to as a configuration state � (or simply configuration or state).
So, the total g(r) has been divided into partial contributions, g�(r); obviously, it must be
g(r) = ∑

� g
�(r). In [5] and [6], this kind of structural study is described in detail for the case

of liquid water and the results are useful to study the extension of equation (1) to molecular
fluids. Here, we will consider only the hydrogen-bond (HB) and non hydrogen-bond (NHB)
states of water. The angular values, which limit the HB configuration, are reported in [5]. In
figure 1, the total g(r) and the partial contributions gHB(r) and gNHB(r) are shown. It is worth
noting that the usual concept of hydrogen bond coincides with the HB configuration of pairs
in the first coordination shell (r < 3.5 Å).
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Figure 1. Centre of mass pair distribution functions of water at T = 254 K [5]: the total g(r)
(——), the partial gHB(r) (– – –) and gNHB(r) (· · · · · ·) for HB and NHB pairs, respectively. g�(r)
is computed as (1/�)

∫ ∫
�

dω1 dω2 g(r, ω1, ω2). The inset shows r3g(r) for NHB states.

2. Theory

The translational dynamics can be investigated by using the functions

R2(r0, �
�; t) = 〈r2

12(t)〉0,� − 〈r2
12(0)〉0,� (2)

S2(r0, �
�; t) = 〈(r12(t)− r12(0))

2〉0,� (3)

where r12 is the intermolecular centre of mass (c.o.m.) separation vector and 〈 〉0,� stands
for averages over tagged pairs of molecules which, at the time t = 0, are in the region of the
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configuration space characterized by the distance r0 = r12(0) and by orientations belonging to
the subspace �� . The functions of equations (2) and (3) represent the extension to molecular
fluids of the functions used to investigate the relative motion in monatomic fluids [1, 7]. To
calculate the short time expansion of equations (2) and (3), we introduce G2(r0, �

�, rt ; t);
with respect to G2(r0, rt ; t), where rt = r12(t), it adds to the pair the constraint to belong to
the configuration � at t = 0. By definition, it must be

G2(r0, �
�, rt ; 0) = ng�(r0)δ(rt − r0) (4)

where g�(r) stands for a restricted angular average of g(r, ω1, ω2).
Then, equation (1) becomes

G2(r0, �
�, rt ; t) = G2(r0, �

�, rt ; 0)− KT

µ
n∇r0∇rt [g

�(r0)δ(r0 − rt )]
t2

2
+ · · · . (5)

The short time expansion of 〈r2
12(t)〉0,� is

〈r2
12(t)〉0,� = 〈r2

12(0)〉0,� − KT

µ
n

∫ b
a

dr0
∫ ∞

0 r2
t ∇r0∇rt [g

�(r0)δ(r0 − rt )] drt∫ b
a

dr0
∫ ∞

0 G2(r0, ��, rt ; 0) drt

t2

2
+ · · · (6)

where a and b are the limits defining the shell that the tagged pairs initially occupy, i.e. the
initial separation r0 varies between a and b.

It is worthwhile to write

∇r0∇rt [g
�(r0)δ(r0 − rt )] = g�(r0)∇r0∇rt δ(r0 − rt ) + ∇r0 [g�(r0)]∇rt [δ(r0 − rt )] (7)

and to write the numerator of the second term of the expansion (6) as.∫ b

a

g�(r0) dr0∇r0

∫ ∞

0
r2
t ∇rt [δ(r0 − rt )] drt

+
∫ b

a

[∇r0g
�(r0)] dr0

∫ ∞

0
r2
t [∇rt δ(r0 − rt )] drt . (8)

By exploiting the property of the Dirac δ function derivative,∫
f (rt )∇rt δ(r0 − rt ) drt = −∇r0f (r0) (9)

the expression (8) reduces to

−8π [b3g�(b)− a3g�(a)] (10)

and equation (6) becomes

〈r2
12(t)〉0,� = 〈r2

12(0)〉0,� +
8πKT

µ
n

[b3g�(b)− a3g�(a)]∫ b
a

dr0
∫ ∞

0 G2(r0, ��, rt ; 0) drt

t2

2
+ · · · . (11)

Finally, from the zero time condition of G2(r0, �
�, rt ; t), given by equation (4), and the

definition of R2(r0, �
�; t), given by equation (2), one obtains

R2(r0, �
�; t) = 6KT

µ

 g�

N�0

t2

2
+ · · · (12)

where

 g�

N�0
=

4
3πn[b3g�(b)− a3g�(a)]

4πn
∫ b
a
r2g�(r) dr

. (13)

Equations (12) and (13) show that the curvature of R2(r0, �
�; t) depends on the selected

range r0 as well as on the pair configuration, and it can be positive, negative or vanishing; they



5124 A De Santis et al

also state the relation between the local structure, given by restricted angular averages g�(r)
of g(r, ω1, ω2) and the microscopic dynamics of the system. If one applies equation (5) to
calculate the statistical averages in the function S2(r0, �

�; t) of equation (3), one obtains the
trivial result

S2(r0, �
�; t) = 6KT

µ

t2

2
+ · · · (14)

which shows that the starting steps described by the mean square displacements of equation (3)
are insensitive to the local structure. The regime described by equation (14) is usually known
as the ballistic or free flight regime of motion. So, while S2(r0, �

�; t) always shows the free
flight behaviour whatever the choices of the initial range r0 or configuration � are, the short
time behaviour of R2(r0, �

�; t) depends not only on r0, as in monatomic systems, but also on
the relative pair orientation determined by the configuration �. In what follows, we apply the
results to liquid water owing to the strong orientational character of its molecular interactions
which should make the R2(r0, �

�; t) dependence on � particularly relevant.

3. Results

The derived expressions have been applied to liquid water and compared with the simulated
results. Molecular dynamics runs were performed by exploiting the TIP4P potential [8] at
constant N,V,E conditions and using a time step of 1 fs. The particle configurations were
stored every ten time steps and runs of 15 ps were used. A system of 864 particles in a cubic
box of half length of 14.8 Å was chosen. The temperature fluctuated within 245±5 K. Checks
on the short time motions have been performed by running the particle system with a time step
of 0.1 fs and storing the configurations every 1 fs.

The simplest way of applying equations (12) and (14) is to select r0 < 3.5 Å, i.e. to
choose molecules that at initial time are in the first coordination shell (see figure 1). In this
case, equation (13) simplifies and becomes

 g�

N�0
=

4
3πnb

3

4πn
∫ b

0 r
2g�(r) dr

g�(b) (15)

where the ratio multiplying g�(b) is between the numbers of molecules present in two spheres
of radius b which have the average density n and the local density of the configuration �,
respectively. Figure 2 shows the functions D�R(r0; t) = R2(r0, �

�; t)/12t and D�S (r0; t) =
S2(r0, �

�; t)/12t for pairs that initially are H-bonded or non H-bonded in a sphere of radius
b = 3.5 Å. At short times, 0.015 < t < 0.04 ps, all the functions show the free flight motion
with exception of DHBR (r0; t) which has a time dependence tα with α clearly greater than 1.
Equations (12)–(14), with the help of the g�(r) of figure 1, allow us to explain these behaviours.
From equation (14), one expects no dependence of S2(r0, �

�; t) from the initial configuration
�. This agrees with the trends of figure 2 which show that DHBS (r0; t) and DNHBS (r0; t)
(small dotted and dashed–dotted lines, respectively) coincide for t < 0.04 ps. By contrast
the trends of DR(r0; t) are very different: for NHB pairs (large dots), the t dependence holds
and DR(r0; t) is also greater than DS(r0; t); for HB pairs, the linear time dependence fails.
Equations (12) and (14) show that the short time expansion of R2(r0, �

�; t) and S2(r0, �
�; t)

are equal when  g�/N�0 = 1. For HB states, gHB(r) nearly vanishes around b = 3.5 Å (see
figure 1) so that, from equation (15),  gHB/NHB0

∼= 0 and the t2-coefficient in equation (12)
tends to vanish. Consequently, DHBS (r0; t) increases as tα with α > 1. For NHB pairs, since
N�0

∼= 0.8 [5], from equation (15) it turns out that gNHB/NNHB0
∼= 4. The t2 dependence of
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Figure 2. The functions D�R(r0; t) = R2(r0, �
�; t)/12t and D�S (r0; t) = S2(r0, �

�; t)/12t
(logarithmic scales) for r0 < 3.5 Å: DNHBR (r0; t) (• • • •), DHBR (r0; t) (– – –), DNHBS (r0; t)
(— · —) and DHBS (r0; t) (· · · · · ·).

R2(r0, �
NHB; t) still holds;DNHBS (r0; t) increases linearly with time and the intensity is four

times enhanced as is clearly shown in figure 2.
These results demonstrate the strong dependence of R2(r0, �

�; t) on the initial
microscopic pair configuration �. It is now interesting to study its dependence on the initial
r0-range, in particular in the case of NHB configurations of the first coordination shell where
the ballistic component of the radial motion is very strong. We search an initial separation
range of r0, for which R2(r0, �

NHB; t) should have a vanishing contribution of the quadratic
term in the short time expansion. By analogy with the case of HB pairs, this would indicate
the existence of a stable microscopic configuration around which the pair tends to stay before
diffusing. Equation (13) indicates that this is possible for every r0-interval where the function
r3

0g
�(r0) ceases an increasing or decreasing trend. The inset of figure 1 suggests that, for

4.6 < r0 < 5.1 Å,  gNHB/NNHB0
∼= 0. Figure 3 shows R2(r0, �

NHB; t) for this choice of
the initial r0 range; as expected the initial curvature tends to vanish. This means that around
this zone the NHB pairs realize their more stable microscopic arrangement; in terms of local
structure the distance of 4.8 Å roughly corresponds to the distance of peripheral molecules of
a tetrahedral cluster.

From the short time dynamics of HB and NHB pairs, we can derive some information
on the way the particles follow to overcome the first neighbour barrier and start the diffusion
process. For r0 < 3.5 Å, the lack of the t2 dependence in the R2(r0, �

HB; t) function can
be interpreted as the consequence of a hindered motion along the radial r12 direction (i.e.
the H-bond direction); the HB pairs practically conserve their relative average distance for
t < 0.02 ps, i.e. for the time in which the other functions start the characteristic free flight
motion. The behaviour of NHB pairs is different for the particles in the first coordination shell
(interstitial particles) and those around 4.5 Å which are peripheral molecules of a tetrahedral
cluster [5]. The enhanced short time t2 dependence of R2(r0, �

NHB; t) for r0 < 3.5 Å,
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Figure 3. The functions R2(r0, �
HB ; t) (— · —) for r0 < 2.8 Å, R2(r0, �

HB ; t) (– – –) for
r0 < 3.5 Å, R2(r0, �

NHB ; t) (• • • •) for r0 < 3.5 Å and R2(r0, �
NHB ; t) (——) for

4.6 < r0 < 5.1 Å.
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Figure 4. The functions R2(r0, �
HB ; t) (– – –) for r0 < 3.5 Å (first coordination shell),

R2(r0, �
HB ; t) (— · —) for r0 < 2.8 Å (first subshell), R2(r0, �

HB ; t) (· · · · · ·) for 2.8 < r0 <
3.5 Å (second subshell).

indicates that the NHB particles behave as network defects: they are expelled from the first
coordination shell towards the region around 4.5 Å. In this region, the NHB configurations of
supercooled water are stable and a vanishing initial curvature of the function R2(r0, �

NHB; t)
can be obtained. It is worthwhile to stress that the t2 coefficient of R2(r0, �

�; t) vanishes
only for particular choices of the a–b range. For HB pairs, for example, equation (13) and
figure 1 suggest that for a < 2.4 Å and b = 2.8 Å one would obtain a fast increase of
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R2(r0, �
HB; t) with time, since  gHB/NHB0

∼= 6 (in this case NHB0
∼= 2, i.e. one half of the

HB molecules of the first coordination shell). Figure 3 shows that this prediction is confirmed
by the results of the MD simulation: the nearest pairs are ‘expelled’ towards the stable position
of 2.8 Å of the HB pairs. Moreover, the function R2(r0 < 2.8 Å, �HB; t) has a maximum
around 0.07 ps that should indicate the presence of the HB vibrations already detected in
the short-time behaviour of specific correlation functions [9, 10]. To confirm this argument,
figure 4 shows the behaviours of R2(r0, �

HB; t) for r0 < 3.5 Å (first shell), r0 < 2.8 Å (first
subshell) and 2.8 < r0 < 3.5 Å (second subshell). As is seen, the pairs in the first and second
subshell seem to behave as damped oscillators with opposite phase relationship. An average
non-oscillating trend results for all the pairs of the first coordination shell. A more refined
explanation, based on an instantaneous normal mode approach, is reported in [11]. Here, we
would stress that the function R2(r0, �

�; t) is very sensitive to the local structure that the
molecules probe in the first time steps of motion. By contrast, the function S2(r0, �

�; t) is
insensitive to the local structure and its short time behaviour (not shown) is independent of
both the configuration and the r0-range.

4. Conclusions

By introducing the time-dependent pair distribution function G2(r0, �
�, rt ; t), a relationship

between the short time dynamics and the local structure has been obtained. Consequently,
the short time pair dynamics joined to the structural properties turns into a powerful tool to
achieve a reliable picture of the microscopic properties of molecular liquids. In the specific
case of water, a crude description is gained by considering HB and NHB pairs. The starting
time-steps of HB pairs appear mainly due to a re-orientation of the r12 vector since the
average radial motions are rather hindered; the process is accompanied by the expulsion,
from the first coordination shell, of NHB molecules (the defects of the tetrahedral network), in
agreement with the structural analysis [5, 6] and previous dynamical studies [12, 13]. However,
as indicated by the asymptotic trends of the g(r) of figure 1, the NHB states represent about
90% of the pair angular space and have some structure in the first coordination shell visible
as a shoulder around 3 Å in gNHB(r). A more refined dynamical description requires us to
consider the microscopic configurations � which compose the NHB states [5] as well as to
explore different initial ranges of r0. For HB states, the choice of r0 < 2.8 Å has revealed
the presence of oscillating motions which confirm the strong sensitivity of the R2(r0, �

�; t)
function to the local structure.
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